BIPLANE an Oxford Instruments company

Imaris Introduction 2018

Xi (Nancy) NAN Application Support nancy@bitplane.com

What is Imaris

- Software for visualization, segmentation, analysis and interpretation of multi-channel 3D and 4D datasets.
- Runs on 64-bit version of both Mac and PC
- Modular based application allows customization of Imaris capabilities.
- Supports all Confocal file formats

What is Imaris

Module based

- Imaris
- Imaris MeasurementPro
- Imaris Cell
- Imaris Lineage
- Imaris Vantage
- Imaris Coloc
- Imaris FilamentTracer
- Imaris XT
- Imaris Batch

Agenda

- Arena View Data Management
- Application Segmentation Tools
 - Spots/Surfaces/Cells rendering
 - Filaments rendering

- Cell/Object Tracking
- Colocalization Analysis

🗯 🐼 🎨

BITPLANE an Oxford Instruments company

Imaris 8 – Arena

Search field (files, tags.. Arena tree provides direct access to all the components of your experimental data including creation parameters, Vantage plots and (batch) results

displays contents of the current tree location or any search results displays object's properties, tags and surpass objects

Directly Read More than 40 Microscopy File Types

- Andor: Multi-Tiff (Series) (*.tiff, *.tif)
- Andor: iQ ImageDisk (*.kinetic)
- Applied Precision DeltaVision (*.r3d, *.d3d, *.dv)
- Biorad MRC 1024, 600 Series (*.pic)
- Biovision: Ivision (*.ipm)
- Biovision / Scanalytics: IP Lab (series) (*.ipl)
- Bitplane: Imaris 2.7, Imaris 3, and Imaris 5.5 (*.ims)
- Bitplane: Imaris Scene File (*.imx)
- BMP (adjustable file series) (*.bmp)
- Gatan Digital Micrograph (*.dm3)
- Hamamatsu/Compix SimplePCI (*.cxd)
- IMOD binary file (*.imod, *.mod), object scene file
- IMOD MRC file (*.mrc, *.st, *.rec)
- 3i Slidebook (*.sld)
- Leica Image Format LIF (*.lif)
- Leica Vista LCS (*.tif, *.tiff, *.lei, *.raw)
- Leica Series (*.tif, *.tiff, *.inf, *info)
- Leica TCS-NT (*.tif, *.tiff)
- Molecular Devices: Metamorph Stack (*.stk)
- Molecular Devices: Metamorph ND (*.tif, *.nd)
- Micro-Manager Image 5D (*.tif *.tiff *.txt)
- Nikon ICS "Huygens compatible" (*.ics, *.ids)
- Nikon Elements ND2 (*.ND2)

- Olympus Cell^R 1.1 (*.tif, *.tiff)
- Olympus FluoView (*.tif, *.tiff)TIFF
- Olympus OIB (*.oib)
- Olympus OIF (*.oif)
- Olympus VSI (*.vsi)
- Open Microscopy Environment Tiff (*.tiff, *.tif)
- Open Microscopy Environment XML (*.ome)
- Perkin Elmer: Ultraview (*.tim, *.zpo)
- Perkin Elmer: Volocity / OpenLab LIFF (*.liff)
- Perkin Elmer: Volocity / OpenLab RAW (*.raw)
- Prairie Technologies (*.xml, *.cfg, *.tif)
- Quick PALM (.quickpalm, .tif)
- TIFF (adjustable file series) (*.tiff)
- TILL Photonics: TILLvisION (*.rbinf)
- Zeiss Axiovision (*.zvi)
- Zeiss LSM410, LSM310 (*.tif, *.tiff)
- Zeiss LSM510, LSM 710 (*.lsm)
- Zeiss CZI (Zen) (*.czi)

BITPLANE

an Oxford Instruments company

A GE Healthcare Company

BioVision Technologies
Digital Imaging
Solutions...

BUSINESS

What we do in Imaris

What is segmentation and why we do this?

endering - Properties				6
47 🖄 🔌 🧐 🖉 🚸 🛥 🗋	4.0			8
4 📝 📄 Surpass Scene				
🔽 🔆 Light Source 1				
🔽 📼 Frame				
🔲 💐 Volume				
4 🔽 🔄 rendering				
🔽 😏 ch2				
📝 🌭 ch3				
📝 🐝 Spots 1				
👝 😹 🔕 😿 🥥 🛎				
				_
Overall Detailed				_
Variable	Value	Unit	Surpass O	b
Number of Disconnected Components per Time Point	14		ch2	
Number of Disconnected Components per Time Point	30		ch3	
Number of Spots per Time Point	347		Spots 1	111
Number of Surfaces per Time Point	14		ch2	
Number of Surfaces per Time Point	30		ch3	
Total Number of Disconnected Components	14		ch2	
Total Number of Disconnected Components	30		ch3	111
Total Number of Spots	347		Spots 1	
Total Number of Surfaces	14		ch2	Ш
Total Number of Surfaces	30		ch3	
				Ш
		_		
< III				
a.				100
			77 1 7	

What we do in Imaris

What we do in Imaris

Spots	Ellipsoid Axi	Number	Track Displ	Track Intensity Sum
 Surfaces 	Ellipsoid Axi	Position	Track Dura	V Track Length
Acce	Ellipsoid Axi	Position	Track Ellips	Track Number of Branches
Acce	Ellipsoid Axi	V Position	Track Ellips	Track Number of Fusions
C Acce	Ellipsoid Axi	Speed	Track Ellips	Track Number of Surfaces
Acce	Ellipsoid Axi	Sphericit	Track Ellips	Track Number of Triangles
V Area	Ellipsoid Axi	I Time	Track Ellips	Track Number of Voxels
Bour	Ellipsoid Axi	V Time Inc	Track Ellips	Track Position X Mean
Bour	Ellipsoid Axi	Total Nu	Track Ellips	Track Position X Start
Bour	Ellipsoid Axi	Total Nu	Track Ellips	Track Position Y Mean
V Bour	Ellipsoid Axi	Total Nu	Track Ellips	Track Position Y Start
Bour	Ellipticity (ob	Total Nu	Track Ellips	Track Position Z Mean
V Bour	Ellipticity (pr	Track Ar	Track Ellips	Track Position Z Start
Cent	Intensity Cer	Track Ar	Track Ellips	Track Speed Max
Cent	Intensity Ma	Track Ar	Track Ellipt	Track Speed Mean
Cent	📝 Intensity Me	Track Ar	Track Ellipt	Track Speed Min
Cent	📝 Intensity Me	Track An	Track Inten	Track Speed StdDev
Cent	Intensity Mir	Track Ce	Track Inten	Track Speed Variation
Cent	Intensity Std	Track Ce	Track Inten	Track Sphericity Mean
🔽 Disp	🗹 Intensity Sun	Track Ce	Track Inten	Track Straightness
V Disp	🗹 Number of I	Track Ce	V Track Inten	Track Volume Mean
Disp	🗹 Number of [Track Ce	Track Inten	Velocity X
📰 Disp	Number of 5	Track Ce	Track Inten	Velocity Y
Dista	Vumber of 1	I Track Die	Track Leng	Velocity Z
🛄 Dista	Number of 1	Track Die	Track Num	Volume
Ellip:	✓ Number of \	Track Die	💟 Track Num 👂	Volume
Ellipe	Number of \	Track Die	Track Num	

Creating Surface manually via Contour tracing

Visualization & Measurement of structures which cannot be easily segmented from background or neighboring structures

Draw 3D Regions of Interest to get Statistics for those regions or for masking part of one or more channels

Creating Surface manually via Contour tracing

Creating Surface manually via Contour tracing

Optical projection tomography "Haeckaliens"

Cell/Object Detection

- Qualitatively and Quantitatively examine micro relationships that exists between cells and between the cell and its subcellular components
- Analysis is done in 2D, 3D and 4D
- Calculate Statistical parameters such:
 - Distance to membrane
 - Distance to nucleus
 - Number of vesicles per cell
 - Nucleus to Cytoplasm volume ratio
 - Relative Tracking of subcellular objects

Cell/Membrane Detection

Qualitatively and Quantitatively examine micro relationships that exists between cells and between the cell and its subcellular components Analysis is done in 2D, 3D and 4D

Calculate Statistical parameters such: Distance to membrane Distance to nucleus Number of vesicles per cell Nucleus to Cytoplasm volume ratio Relative Tracking of subcellular objects

Filament/Neuron Detection

Filament/Blood Vessels Detection

BITPLANE an Oxford Instruments company

Imaris TrackLineage - Object Label

17

Reference Frame / Coordinate System

- Correct Drift by RF

Track Position

- •: Track Position
- Track Position Reference Frame
- : Track Position Start
- : Track Position Start Reference Frame
- Track Speed Max
- Track Speed Max Reference Frame
- 🔄 Track Speed Mean
- Track Speed Mean Reference Frame
- Track Speed Min
- Track Speed Min Reference Frame
- : Track Speed StdDev
- : Track Speed StdDev Reference Frame
- : Track Speed Variation
- : Track Speed Variation Reference Frame
- : Track Straightness
- : Track Straightness Reference Frame
- 🔄 Track Volume Mean
- Velocity Angle
- Velocity Angle Reference Frame

Reference Frame / Coordinate System

raw data

rf aligned

Killing Cancer - Cytotoxic T-Cells on Patrol

Two primary kinds of colocalization

Neuron 66, 724-738, June 10, 2010, DOI 10.1016/j.neuron.2010.05.020

Mensa L, Crespo G, Gastinger M, et al. Hepatology, 2011 (53), pp 1436 - 1445

Simultaneous Visualization of Multiple Images

- Correlative Microscopy
 - Confocal &:
 - EM
 - TIRF
 - · DIC, Phase, etc.

- High-mag/Low-mag Overlay
 - Staging
 - Tissue identification

Simultaneous Visualization of Multiple Images

- Flexibility
 - Overlay many images
 - Of differing dimensions (x/y/z/t/channels)
 - Of differing resolutions

Simultaneous Visualization of Multiple Images

Physical sectior

Working distan

Antibody cost

20 um

Any Questions?

Thank you!

BIPPLANE an Oxford Instruments company

